RG & EFT for nuclear forces

Andreas Nogga, Forschungszentrum Jiilich O
ECT* school, Feb/March 2006 Forschungszentrum Jalich

in der Helmhaoltz-Gemeinschaft

® Low momentum interactions:
Using the RG to simplify the nuclear force for many-body calculations.

® Application of chiral perturbation theory to nuclear systems:
How to apply perturbation theory to a non-perturbative problem?

® Three-nucleon forces:
importance of 3NF's for the quantitative description of (light) nuclei
relation to low momentum interactions
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Nuclear forces are usually based on phenomenology.

11t exchange + short range ansatz + NN data # NN force model

The outcome is not unique !

- the relation to QCD is lostl!
How to relate the NN system to other strong interaction processes ?

- 3NF's and MEC's are important for a quantitative description of many observables
How to define consistent 3NF's and MEC's?

- Lattice QCD will be able to predict NN, 3N observables for high pion masses.

How extrapolate to physical pion masses?
How to make use of the results for more complex systems?

Find appropriate degrees of freedom and make an EFT for nuclear systems!
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What properties of QCD do we want use to build the EFT?

1

Locp =41, iquL+q_RilDQR—§TI“GWGW—(?RM(]L—(?LMQR

D =3d—igf® T  T°= Gell-Mann matrices

M = ( W(L)“ 0 ) quark mass matrix; here only flavor SU(2) sector
md

qo.r == (1 £v5)q projection of on left/right handed quarks

1
2
In this form chiral symmetry becomes apparent:

m, and m, (5 and 9 MeV for the usual renormalization scale of 1 GeV)
are very small compared to typical hadronic masses (approx. 1 GeV)

_/\/l ~ O # QCD Lagragian becomes chirally symmetric
SUL(Q) ) SUR(Q)
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SUr (2) ® SUR (2) is an approximate symmetry

m, and m are finite.
But in the SU(2) sector chiral symmetry should be a good approximation.

Experimental observation is:

- There are isospin multiplets like p,n or =3 3°
This means that isospin symmetry (“vectorial subgroup” with L=R is realized)

- There are no opposite parity partners for these states with at least
approximately the same mass!

—

The "axial” part of chiral symmetry is spontaneously broken down!
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SUT, (2) R SUR(Q) is spontaneously broken downto STy, (2)

(the Lagragian is invariant, but the vacuum is not)

# Goldstone's theorem: there are massless bosons (Goldstone bosons)

Experimentally, we find t*, 10", 11" |

0

Since chiral symmetry is also explicitly broken, the pions are not strictly massless,

but at least approximately

m. ~ 138 MeV <1 GeV

We again see that chiral symmetry is spontaneously broken.
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Which degrees of freedom should we choose for an EFT for QCD?

- nucleons, if we want to use it for nuclear physics

- pions, since these are almost massless,

mass of the pions is of the order of a typical momentum in a nucleus
Chiral symmetry constrains the possibly interactions of pions, and pions and nucleons.
A predictive effective theory for strongly interacting systems

' can be formulated: Chiral Perturbation Theory (ChPT)
The explicit breaking of chiral symmetry can be taken into account by pion mass
dependent terms that break chiral symmetry the same way as it is broken in QCD!

Since the pion mass is small, these terms are suppressed.

The inclusion of nucleons requires special care, because of its large mass:
Heavy Baryon Chiral Perturbation Theory.
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Being an EFT, one can formulate an infinite number of terms in the Lagragian.
The terms are ordered according to the number of derivatives and quark (pion) mass
insertions (power counting).

This leads to an expansion in terms of a typical small momentum Q.

The leading order Lagrangians, e.g., read (the part of interest for the NN forces)

1 1 =
£© §8N7T -0 — §m,r27r2 + NT|idy + 29%7'5' -V — 4f7r27- (mx )| N
1 1
- 5(JS(J\ZTJ\Z)(JVTJ\Z) — 5CT(NT&N)(J\ZT&N) +...,
2
£ = Ntl4e;m,? - %mﬂ27r2 + 022 72+ 032 (Oym - OMm) — C—42eijk €abe 0iTa(Vj 1) (Vi me) | N
5 fr fr X fr 2fx
- F(NTN)(NT&N) .V — 5E (NTNYNTrN) - (NT7N) + ...

v=—4—|—2N—|—2L—|—Z<di—|—%—2)

The infinite number of diagrams can be ordered, so that only a finite number
contributes at each order.
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The infinite number of diagrams can be ordered, so that only a finite number
contributes at each order.

If this was strictly true, we would not have bound states within this framework.

v:—4+2N+2L+Z<d@-+@—2>

Ay=di+ = —2=0

2
®o----9 vertices
o----9
®----9
N=2 L=0 N=2 L=1
v=—4+2-24+2-04+2-0=0 v=—4+2-24+2-142-0=2

We naively find the one pion exchange in leading order, and the two pion exchange in
subleading, etc.
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Where is the pitfall?

Let's do time-ordered perturbation theory for the same two diagrams
o (i Hr|k) (k| H1lj) (i Hr|k) (k| Hr|1)(1 Hr|5)
Ly = (i) +Z E; +ie — L}, +Z(E'—|—ie—Ek)(Ej—|—ie—El)

\Hf\k <k|HI|l><l|HI|m><m|HI\J>
+Z T ic— Ep)(E, +ic — E)(E, +ic — )

+ ...

For all particles having a typically small momentum Q, we can estimate the energy
denominators

,‘ 1 1 1

- -f-m , o' X —
A | Ej + e — Ek,l,m Q2 + My Q
.—/ ,,r
¢ | : this diagram is irreducible in the sense that no two nucleon
intermediate state appears

1/Q is in agreement with the power counting estimate
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The same estimate for a diagram with a two nucleon intermediate state is different!

‘ 1 ~ 1 ~ 1
___’_,4:___m E; +ie — Egxm %—I—‘m7r Q
K | 1 1 1 2m

, X X — ——
____’!::.__k Ej+Z€—El % Q Q
.f

This diagram is reducible in the sense that purely nucleonic
intermediate states appear

There is an enhancement of order m/Q !
# This enhancement is sufficient to make the theory non-perturbative.
Good news: the irreducible diagrams give a potential, which can be summed
numerically using a LS equation

This defines a chiral potential.
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Leading order (LO) interaction (in time-ordered perturbation theory):

2QTATJ v
———’—,—’—— - k ————\1:—“k vertex CT/CS
o N )
vertex
2 — — — —
v _ ga I 01:q902-¢
171'(@ — T1 -T2 2 2 /2 2
2m 2m 2m 2m q
( ) 1 G1-q02-q
2 2
2w, Pi Py p12 Py
9 2m+2m 2m_2m_wq
o1-q02-q
= 2
7+

Vo = Cs+Cr dy-09

Other schemes (e.g. Okubo transformation) exist to obtain the potentiall




LO interaction

o/

Forschungszentrum Jalich

in der Helmholtz-Gemeinschaft

We need to solve the LS equation for

2 - — —
a — — : o2 - — —
V(®:—<g ) T1 T2 c 22q+Cs+CTO'1'O'2

2fx

q +mz

Regularization is required !

Vs —e 5] vt g e (B

This choices has the advantage that the counter terms only contribute in s-waves.

Vi (o', p) = /dﬁ dp'Y7 () C Y (p) = 610 6o 41 C

Higher partial waves are a prediction,
if there are no counter terms contributing to them.




LO interaction 0

Forschungszentrum Jalich
in der Helmhaltz-Gemeinschaft

A short note on the relation to yesterday's talk:

- The RG equation for the vlowk potential made the observables
exactly cutoff independent.
The numerical solution automatically put in an “infinite" number
of counter terms.

- Here, I will follow Peter Lepage's approach:
We only add a finite number of counter terms and will
retain a residual cutoff dependence.
These counter terms need to be fitted o data.

-The question, I want to address is:
How many counter terms do I have do add additionally to
the ones requires by naive power counting?
How can I decide without knowing the experimental result?

I will show that studying the cutoff dependence for large cutoffs helps to decide on
that.
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It is instructive to look at the potential in configuration space!

oomd (ga\ .
Vin (1) = 15 <2f ) n

-To [T(r) Si2 +Y(r) o1 - 02

Sio = 3(G1 - #)(5s - ) — 51 - o
e~ M=" 3 3 1
T(r) = 1 -
) Mo [ T (mﬂ')2] T
Y = ——
MyT
s=1 l=j—1 Il=j 1=j+1
_ _ —1 Vi(i+1)
o t=11I'=j—-1 =2575 0 6%
The potential is singular! & I = 0 9 0
03, V=41 62Ut o g jt2
i inle: 2j+1 2741
QM of singular potentials: = — . JiGED
BN t=o|r=-1f 64z 0 18y
/ .
We might need a counter term in =3 0 —6 0
: | —
every partial wave, where the tensor I'=7+1|-18 ng(f; L0 6 %

force is attractivel
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We find the expected cutoff dependence for attractive triplet channels

100
By
S 50
@)
0

2 4 6 8 10 12 14 16 18 20

What is the problem here?

A [fm ]

Size and slope within the cycles
depends on the partial wave

The slope of the "plateau region”
also depends on the energy
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® This cutoff dependence is induced by spurious bound states coming in from threshold.

e For AN<20 fm'l, we find bound states in 3Po

IIIII|T|| IIIII|T|| IIIII|T|‘ IIIII|T|‘ IIIII|T|‘ TTTITm)

|
3

IIIII|,|,|| IIIII|,|,|| 11

|
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-1
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How can it happen that we apparently do not have cutoff independence of the results?
This can partly be understood looking at perturbation theory:

The 211-exchange diagrams can not be renormalized
without additional counter terms!

Doing perturbation theory, we find these counter terms
at second order!

But using the LS equation for the potential, we do include them.

Then, based on perturbation theory, one finds that an infinite number of counter terms
is necessary!

1) solution: KSW counting (freat pions perturbatively) # fails!
2) solution: let us look carefully what happens if we do not use perturbation theory

motivation: QM of singular potentials can be made well defined.
Iteration of the potential (Weinberg counting) works very well.
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The renormalization of singular interactions is possible with
1 counter term (boundary condition) per partial wave (which is still an infinite number)

In LO, this requires the promotion of counter terms from ndively higher orders.

Weuse V= (2672)3 p'p in P-waves, which is supposedly suppressed by (Q/A)?
200 T T T T T T TS L L L L LA LA L LA
150 & 3p = 10 ~
100 £ 0 3 . _/ E

Yo 50 1 wf -

E = + - O - —=

= 0 = 3 E 0 - _]

s~ -50 F 4 w© —— 10 MeV 3P -
= E : —— 50 MeV .
-100 , E S — JooMev 0 -
-150 £ | Fit performed at 50 Me\s —— 190 MeV .
-200 E T NI AT TN R T I -10 Co v e v b P e b 1y T
2 4 6 8 1012 14 16 18 20 2 4 6 8 1012 14 16 18 20

-1 -1

A [fm ] A [fm ]

As expected, we obtain A independence for all energies.
We, however, see that the "bare” counter terms get infinite!
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0 [deg]

Adding this single counter term leads to an astonishingly good description of the datal
Bound states come in from infinity!

A=20fm"
PSA
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TL [MeV]
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But this leaves us with the problem that we "require” a counter term in all attractive
tensor force channels!

Do we loose predictivity?
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3P0 is the "worst" case. The centrifugal barrier screens the short range part
in higher partial waves effectively.
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For low energy, the inclusion of a higher order counter term is not required!
But it does not hurt either!

30 :I | | I | I I I I | I I I _]

25 £ =— A=20fm" =

- =— PSA .

C . -1 .

Eﬁ 20 - A=8fm ]
o, 15 B 3 E
o : D, -
10 & % 3

5 F -

O : | | | | | | | | | | | | | | | | | I:

0 50 100 150 200

TL [MeV]

We included counter terms in 3P0, 3P2-3F2 and 3D2,
but leave them out for all other channels.
This is sensible, since we will not put the cutoff to infinity and find a plateau!
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Numerically, one does not observe any cutoff dependence in singlets for large cutoffs.

_2 | | | | | | | | | | | | | | | | |
This indicates that no renormalization L -
is necessary in these channels. 4 7
- — |0 MeV 1 .
— [ ——— 50MeV P i
o -6 - —— 100MeV 1
‘) — 190 MeV —
©o -8 _
-10 =
_12 ] ] : I : I : I : I : I : I : I i

2 4 6 38 101214161820
Again, up to 100 MeV A= 3-4 fm ™! seems to be appropriate. A [fm ]

AlsoAN=25 fm leads ’ro a reasonably independent resulf.

For 190 MeV, A = 5-6 fm insures almost converged results.

Numerically, no inconsistency of the power counting is found in singlets.
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The s-wave channels do not
need additional counter terms!

The “"bare" counter term in 351
may be infinite, but the results
stay cutoff independent.

This is a "bare" coupling
constant.

We observe that the mixing
angle get cutoff independent
for larger cutoffs as usual.




LO potential

o/

Forschungszentrum Jalich

in der Helmholtz-Gemeinschaft

The 150 prediction is poor!

O [deg]
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- This will be resolved in higher orders!
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High partial waves remain predictions of the chiral potential.
E.g. some typical examples:

5 _I T T T | T T T T | T T T T T T T T 1'6 _I T T T | T T T T T T T T T T T I_
- 1 14+ =
4 - A=20fm" - -3 :
C PSA ] 1.2 N F4 ]
on 3 F 4 10 y
o ] 08 y
o 2 3 3 06 B
B G, 3 0af .
- 1 02| .
O C 1 1 1 1 1 1 1 1 1 1 | 1 1 1 I_ 0.0 L 1 1 1 1 1 1 1 1 1 1 1 1
0.3 __I T T T T T T T T T T T T T T T_] 0.0 i T T T T T T T T T T | T T T I_
- 102 —
g 1 o4l 4
E‘D 0.2 E_ _E e i |
=, a 1 06 - -
“© 01k 4 -0.8 | .
: 1-10
O‘O :l 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 I: _1'2 _—I 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 | —
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So far, we have looked at the scattering observables:

The deuteron is interesting, because it should be described well, since it is very loosely
bound.

r [fm] T [fl’l’l]
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What are the predictions for the deuteron?
The deuteron is very loosely bound # high momentum components not important

ALfm™ 1| E [MeV] TIMeV] Ppl%]l Aglfm™ 1 n  rifm] Qulfm*1| n
2 2.225 2891 bH24 0.839 0.030 1.889 0.3005 1
3 2225 3845 8.09 0.855 0.028 1913 0.2942 1
4 2.225 4548 8.23 0.866 0.027 1933 0.2827 1
5 2225 b3b3 7.49 0.867 0.025 1935 0.2747 1
6 2.224 6233 6.94 0.866 0.025 1932 0.2704 2
7 2.225 7016 6.73 0.865 0.025 1928 0.2683 2
8 2.225 7595 6.76 0.864 0.026 1926 0.2676 2
10 2.227 8199 7.00 0.864 0.026 1925 0.2674 2
12 2227 8580 7.14 0.864 0.026 1925 0.2675 2
14 2.224 9194 7.14 0.863 0.026 1926 0.2675 2

Expt. 2.225 — — 0.8846 0.026 19671 0.2859 1
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We find that the "bare" coupling constants maybe be infinite.
However, the expectation value of the contact terms remain finite.

3. 3
Sl' D1

| | | | | | | | | | | | |
6 8 10 12 14 16 18 20

Ny .

b4 6 8 10 12 14 16 18 20
1
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For purely short range potentials, one finds that short 3NF's are needed to get well
defined results.

Chiral Perturbation Theory does not predict a 3NF's in LO!
and the LO chiral potential has got a finite range.

Does this really imply that no 3NF's are necessary at LO?

We need to studying the cutoff dependence for the 3H bound state to find ouft,
whether we are missing some 3N counter terms (namely 3NF's) ...
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Indeed, the binding energy becomes cutoff independent!
We find approx. 4 MeV. The discrepancy to the experimental value is 4 MeV!
To we observe a breakdown of the theory?

E . [MeV]

9 S L L L Y L Y Y s
2 4 6 g 10 12 14 16 18 20

-1
A [fm ]
Estimate the higher order effect should be based on potential energy

0 2 1\2
AFE ~ (= MeV ~ 2M
x (700 MeV) (V) (5) 50 MeV eV
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- The appropriate effective field theory of QCD at low energies is
Chiral Perturbation Theory.

- In NN systems, some kind of non-perturbativity is obvious,
because we find a bound deuteron!

The EFT expressions show that iterated, irreducible diagrams are enhanced

# We define a chiral potential.

- Naive counting cannot absorb all cutoff dependence, because
of the unphysical behavior of the LO potential.
To define a reasonable cutoff is difficult, because no plateau regions are seen.
Additional counter terms resolve the problem.

- Then spurious bound states do not interfere with low energy physics!

- The extension to the 3N system is predictivel!




